Metabolic Engineering of Microorganisms for the Production of Higher Alcohols
نویسندگان
چکیده
Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols.
منابع مشابه
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols
Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first...
متن کاملProduction of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metab...
متن کاملEngineering strategy of yeast metabolism for higher alcohol production
BACKGROUND While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli...
متن کاملGenetic engineering of algae for enhanced biofuel production.
There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H(2) yields, and the dive...
متن کاملExpanding the repertoire of biofuel alternatives through metabolic pathway evolution.
A multitude of concerns that include climate change, political instability, and depletion of petroleum resources has recently ignited renewed interest in fossil fuel alternatives (1). As a result, microbial systems have been extensively explored and successfully used for the biosynthesis of some biofuels, most notably ethanol (2, 3). Higher-chain alcohols, however, offer several advantages comp...
متن کامل